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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1341

A'SIﬁPLIFIED METHOD OF ELASTIC-STABILITY
| ANATYSTIS FOR THIN CYLINDRICAL SHELLS
I - DONNELL'!S EQUATION
By 3. B. Batdorf

SUMMARY

The equation for the equilibrium of cylindrical
shells introduced by Donnell in NACA Report No. 479 to
find the critical stresses of cylinders in torsion 1is
applied to find crltical stresses for cylinders with
simply supported edges under other losding conditlons.

It is shown that by this method solutions may be obtained
- very easlily and the results iIn each cace may be expressed
in terms of two nondimensional paramscters, one dcpandent
on the critical stress and the other essentislly cdeter-
mined by the geometry of the cylinder. The influence of
boundary conditions related to edge displacements in the
shell medlan surface l1s discussed. The accuracy of the
sclutlions found 1s éstablished by comparing them with
previous theoretical solutions and with test results.

The solutions to a number of problems concerned with
buckling of cylinders with simply supported edges on the
basis of a unified viewpoint arec presented in a conVunient _
form for practical use. .

INTRODUCTION

The recent cmphasis on aircreft designed for very
high speed has resulted in a trend toward thicker skin
and fewer stiffening elements. As a result of this o
trend, a larger fraction of: the load i1s being carried by
the skln and thus abllity to preo*ct accurctely the.
behavior of the skin under load hes become more impor-
tant. Accordingly, it was considered desirable bto pro-
vide the designer wlth more information on the buckling
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of curved sheet than has been avallable in the past. In
carrying out a theoretical ressarch program for thils pur-
pose, a method of analysis was developed which 1s believed
to be simpler to apply than those generally appearing in

the literatureé. The specific problems solved as a part

of this research program are treated in detail in other
papers. The purpose of the present investigation, which is
discussed in two papers,ls to precsent the method of analysls
that was developed to solve these problems. In the present
paper the method 1s briefly outlined and applied fo a number
of the simpler probleme in the buckling of cylindrical
shells. In reference 1 the method 1s generallzed for
application to more complicated problems.

THEORETICAL, BACKGROUND

In most theoretical treatments of the huckling of
¢ylindrical shells (see references 2 to 4) three simul-
taneous partlal differential equations have been used to
express the relationship bestween the components of shell
medlan-surface displacement u, v, and w 1in the
axlal, circumferential, and radial dlrectlions, rospec-
tively. ©No general agreement has been reached, however,
on just-what these equations should be. In 1934 Donnell
(reference 5) pointed out that the differences in the
various sets of equations arose from the inclusion or
omission of & number of relatively unimportant terms
(referred to in the present paper as higher-order terms),
and proposed the use of simpler equations in which only
the most essentlal terms (first-order terms) were retalned.
The omitted terms were shown to be small, and thus the
simplified equations to be appllicable, if the cylinders
have thin walls and if the sguare of tho number-of cir-
cumforential waves 1s large compared with unity., Donnell
further showed that the three simplified equations can
be transformed into a single cighth-order partial dif-
ferential equation in w (sce appendix A of the prosent
paper) in which the effects of the displacoments u
and v are properly taken into account; this cgquation
willl hereinafter be referred to as Donnell's equation.

When highor-order terms aro included in the threo
partial differential equations previocusly mentioned, the
resulting theoretical buckling stregses are usually very
complicated functions of the cylinder dimensions and the



NAGA TN No., 1341 -3

elastic propertles of the material. A family of curves
is ordinarily drewn giving the crltical stress as a
functlion of the length-diameter ratio for specified
values of the radius-thickness ratio and for glven
elastic properties (references 3%, L, and 6). When the
higher-order terms are omitted from the equations and

the requirement of an integral numbsr of circumferential
waves 1s removed, new parameters can ve introduced which
combine the cylinder dimenslions and materlal properties
In such a way that the results can be given in terms of.
a single curve. Thess parameters have been used, with
slight variations in detail, by Donnell, Kromm, Leggett
and Redshaw (references § 2nd 7 to 10). The omission of
the higher-order terms also greatly simplifies the cal-
culations, and the calculations are simplest if Donnell's
equation, rather than the set of -three simultanecus equa-
tions, 1s employed.. Donnell's equation, or an equivalent
equation, may therefore be presumed to bé the most prom-
ising for use in solving hitherto unsolved prohlems in
the stability-of ‘cylindrical shells.

In spite of the fact that it was introduced some
time sago, Donnell's equation has: hot' achieved the wide
acceptance for use in ‘the stability analysis of cylin-
drical shells which it appears to merift. Some investi-
gators have continued to use simultansous differential
equations in which higher-order terns appear, presumably
on the assumption that the errors arising from neglect
of these terms might be undesirably large. Others ‘have
dropped second-order terms bubt have contlinued to employ
slmultaneous equations, probablf in order to specify
directly edge-restralnt conditions having to do with
dlsplacements in the,6 axial and circumferential directions,
which cannot be done “with Donnell's equation.

The purposes of the present paper are to establish
the accuracy of the equation by comparing the results ‘
found by the use of Donnell's -equation wlth the results
found by other methods and with experimental results and
to Investigate the question of boundary conditions on u
and v. The additiongl purpose is achieved of presenting
the solutions of & number of problems concerned with '
buckling of cylinders with simply supported edges on the
basis of a unified viewpolnt and in a convenient form
for practical use. In referenco 1 Donnell's equation is
modified to facilitate solution of problcme concerncd
with shells having clampcd cdges.,
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SYMBOLS .

length of curved penel

width of curved panel

diameter of cylinder

integers

lateral pressure

radius of cylindrical shell
thicknéss of cylindrical shell

dlsplacement in axial {x~) direction of point
on shell mediaen surface o -

displacement in circumferential (y-) dlrection
of point on shell median surface *

'displacemanﬁ'in radlal direction of point on

shell medlan surface; positive outward
axlal coordinate

clrcumferential coordinats

numerical coefficlients

- 2
shear-stress coefficlent THL for cylinder or
2 D
%}%? for infinitely long curved strip
r . )
ot
axlal compressive-stressa coefficient
_ cxth: -
for c¢ylinder or > for Infinitely long
Drr i .
curved strip :
clrcumferential compressive-stress coefficlent -

- for Infinltely

e 2 :
O+tL

-J——~ forcylinder or
Dwa

D
long curved stri%:)

r
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Q

* prLZ
hydrostatic-pressure coefflcient >
\ pr

amplitude of deflection function

plate flexural stiffness per unit length -

( Et3 >
12(1 - p2)

Youngt's modulus -

Airy's stress function for the median surface
stresses produced hy the buckle deformetion

length of cylinder

curvature parasmeter (?&E Vl - u@ for cylinder S -
r

2 :
or EE 1 - ua for infinitely long curved
strip)

L/A for cylinder or ©b/A for infinitely long
curved strip

half wave length of buckles; measured circumfer-
entlally in cylinders and axlally in infinitely
long curved strips _ .
dimensionless axisl coordinate (x/b) _
dimensionless clrecumferential coordinate (y/ﬁ} B
Polsson's ratio

applied shear stress

applied axial stress, positive for compression

appllied circumferential stress, positive for
compression - - - -
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BUCKLING STRESSES OF CYLINDERS WITH SIMPLY SUPPORTED EDGES

ILeteral pressure.- The theory for the lateral pres-
sure (uniform external pressure applled to walls only)
at which a cylinder willl buckle is given 1in appendix B
in which it i1s assumed that the lateral pressure ceauses
the buckling by producing a circumferential stress Oy

and that it affects the buckling in no other way. The
results are shown in a logaritimic plot in figure 1. The
ordinate in this figure 1s the stress coeffilclent ky
which appears in the flat-plate buckling equation (see,
for example, reference li, p.339)
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(The discussion given in the section of the present paper
entitled “"Parameters Appearing in Buckling Curves" shows
the relationship between & cylinder of length L and an
infinitely long flat plate of width b = L.) The abscilssa

2 2
~ L ~ [ L\r 2
Z o= = d - ={= _“1 -
rt . B (r>'t w

mey be ‘regarded elther as a measure of the curvature, or,
for any given ratio of radius to thickness, as a measure

of the length-radius ratio of the cylinder. Figure 1

shows that for small curvature ky approaches the value_h,_

“which applies in the case of simply supported long flat,
plates in longitudinal compression (reference L, p. 327).
As the curvature parameter Z Iincreases, the stress coef-
ficient ky also increases. For large values of 2,

the curve'approaches a stralght line of slope 1/2. This
straight line 1s expressed by the formula

1/2
ky = 1.04z /

As the length-radius ratio increases, for a glven
value of r/t, the number of circumferential waves n
diminishes. Although n must be an integer, the curves
of figure 1 were obtained on the assumption that n 1is
fres to vary continuously. Only small conservative
errors are involved in this assumption. Because n = 1
corresponds merely to a lateral displacement of the entire
circular cross section, the minimum value of n 1is 2,
which corresponds to deformation of the section into an
ellipse. This limitation on n results in splitting
the curve of fligure 1 into a number of curves for 4if-
ferent values of r/t when Z becomes large. Thick-
walled cylinders may reach n = 2 at moderate lengths, _
but thin-walled cylinders reach n = 2 only when much -
longer than they are likely to be in practical construc-

In.figure 2 the curve of figure 1 1s compared with
results based on more compllicated calculations given in
reference li and in reference 6. At fairly large values
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of 2 the results given in reference li and in refer-
ence 6 are in good agreement with the results of the
present paper. At small values gf Z the curve based
on reference l." (Timoshenko) is definitely too low,
because k. should approach the flat-plate value of L
as Z approaches zero. An interssting feature of the
comparison ls that one calculation glves results below,
and the other calculation results above, those given s —
herein. The test data, taken from reference 6, are in

reasongable agreement with and show more scatter than the

theoretical curves. :

In the .case of cylinders so long that n = 2, the ]
requlrement for the valldity of Donnell's equatlon

that n2‘>> 1 4s no longer satisfied and appreciable .
error 1s to be expected. Indeed it may be shown that for
very long cylinders when n = 2 Donnell's equatlon

glves LD/’ as the critical value of the applied .
lateral pressure, whereas the accepted theoretical result

is 3D/r> (by use of the formula given on p. L50 of
reference ). The curves for n = 2 will probably not
of'ten be needed, however, since they apply only when

L)2 5 (35, which.in the case of thin cylinders
corresponds to a very large length-radius ratlio, and if
needed, the curves for n = 2 can be applied in con-
Junction with a corréction factor 0.75.

Ax1sl compression.- The theory for the axial stress
at-which a cylinder will buckle is given in appendix B,
and the results are shown in figure 3. The ordinate 1is
analogous to, and the abscissa identlcal with,the corre-
sponding coordinates used In figure 1. Figure % shows
that for small values of 2, kx approaches the value 1,
which applies In the case of long flat plates in trans-
verse compression with long edges almply supported
(reference ). For large values of Z, the curve
becomes & straight' line of,slope 1. This straight line
1s expressed by the formula, . ’

Ky = Lﬁz = 0,702Z
1T2 o '
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-For any ixed value of r/t some value of 2 always
exists above "vhich I/r is so large that the cylinder
falls as an Ealer strut rather than by buckling of the
cylinder walls. Pin-ended Buler buckling of cylinders
1s indlcated in figure 3 by means of dashed curves.

The result just given for the critical-stress coef-
ficient for :1 eylinder in axial compression leads to the
following ex)ression for the critical stresss

1 EE | : (1)

x 3G - u2) r

The value ziven in equation (1) for the crltical stress
of a moderately long cylinder in axial compression by
use of Dormell's equation is identical with the value _
found by :+ number of investigators using other equations
as'.starting points (references 2 to lL). In the case of
cylinders under ' axial compression the errors involved

in dropping the second-order terms arse therefore con-
cluded to be small.

The buckling stresses given by squation (1) are
nevertheless in serious disagreement with the buckling
stresses obtalned by experiment (reference 11). For a
discussion of ‘the degree of correlation that can be found
between theory and experiment for cylinders under axial
compression, see reference 12.

Hydrostaetiec pressure on closed cylinders.~- When
closed cylinders are subjecfed to external pressure, both
axial and circumferential stress are present. The theory’
for buckling under these combined loads is given in
appendix B. The results are shown in figure li. The
ordinate ©p  used in this figure is a nondimensional

measure of the pressure p defined as follows:

27 : .
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The coefficlent Cp can be directly related to the
corresponding stress coefficients ky ~and ky. By -
definition ' -

. Ot L2
--k = y

Y #2p

and, according to the hoop-stress formula,

It follows from the threé preceding equations that Cp
1s numerically equal to ky. Similarly Cp can be shown
to be numerically equal to 2ky.

At low values of Z, Cp approachés the value 2,
which Implies that kx = 1 and ky = 2. That these
values of"—~k represent-a critical combination of stresses
for an Infinitely long flat plate was shown in refer-
ence 13. At large values of Z, the curve approaches
the curve given in figure 1 for buckling under lateral
pressure alone and, like that curve, has branches
representing buckling into two clrcumferential waves.

In flgure 5 the computed valuas of the pressure
coefficient - Oy at which the cylinder would buckle if
only the axial pressure were acting and if—only lateral
pressure were acting are compared with the results when
both are acting because ofhydrdéstatic pressure. At
large values of 2 the circumferential stress at which
buckling occurs under hydrostatic pressure 1s substan-
tially the same as it would be if no axial stress were
present, as 1n the case of lateral pressure. The reason
that the clrcumferential stress appears as the main factor
in buckling at high values of Z presumably ‘is that at
these values of Z the axlial stress regquired to produce
buckling is many times the circumferential stress required,
whereas under hydrostatic pressure the axlal stress
actually present is only one-~half the circumferential
streass.
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In figure 6 the curve of figure li is compared with
curves representing Sturm's theoretical results- (refler-
ence 6) and with a curve based on the following formula
develiﬁed at the U. S. Experimental Model Basin (refer-

ence s, equation (9)):
,t)5/2
2,4 (‘ci

6 s ]

Thlis formula 1s an approximation based on theoretlical
results obtained by von Mises (reference l, p. 79) which
are ldentlcal with the results in the present paper for
buckling under hydrostatic pressure. Figure 6 shows that
Sturm''s theoretical results (reference 6) are in reasonable
agresment with tThose of the present paper and that the -
formule from the U. S. Experimental Nodel Basin practi-
cally coincldes with the present results except at very
low values of Z. ,

P

Test results from references 6 and 1lli are included
in figure 6. The test data are in good azreement with
the theoretlcal results except at low values of the )
curvature psrameter Z at which the theoretical resulfs
are appreclably above those obtained experimentally. A
possible explanation of the discrepancy between the -
theoretical and experimental results at . low curvature is
suggested by the relative importance of axial and circum-
ferential stress in causing buckling. The axlal stress
becomes Important only at low vglues of the curvature
parameter Z. It 1s known experimentally that buckling
under axial stresses may occur far below the thearetical
value of the crliticgl stress. At low values of %
cylinders under hydrostatic pressure may therefore be :
expected to buckle well below the theoretical critical
load just as cylinders do under axlal compression.

Torsion.- The problem of the determlination of the
buckling stresses of c¢ylinders in torsion was solved by
Donnell (reference 5) who gave an approximaste solubtion
of the equation of equilibrium. A someWhat more accurate
solution of thls equation 1s gilven in reference. 15. Thse
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essentlal results are shown in figure 7 taken from refer- -
ence 15. At low values of Z the buckling-stress coeffi-

clent kg approaches the value 5.3l approprilate to

infinitely long flat plates loaded in shear (reference 16).

At higher values of Z the curve approaches a straight

line given by : : -

kg = 0.8523/*

At very high values of the curvature parameter the curve
splits up into a number of other curves, dependlng on the
value of r/t. The curves for various r/t values at
high values of . Z.. represent buckling into two circum-
ferential waves. . As mentioned before, Donnell's equation
is: not reliable for the case n = 2 (a case which occurs

: ‘ L 2
for cylinders in torsion when % > 10%). A solution

" for this' case glven by Schwerin and discussed in refer- N
ence 5 results in critical stresses about 20 percent

below those of the present paper. Because Schwerin's

solution does not satisfy the condition w = 0 at the

end of the cylinder, however, it 1s probable that the

error in ‘the present solution for n = 2 1s less than

-20 percent. : ' : :

In experimentsal investigations of cylinders in .
torsion ths maximum rather than the critical loads have
usually been reported. ' Becauss .these maximum loads
usually exceed the critical loads by only a small margln,
it is common practice to check theoretical buckling
stresses by comparison with the average stresses at
meximum load. Such a comparison is provided in figure 8
which incorporates test data from references 5, 11, 17,
and 18. For this figure the test results average about
15 percent below those given by theory.

"DISCUSSION ) Co -

- Parameters appearing in buckling curves.- The fact
that The buckling of a cylinder under axlal compresslon,
latéral pressure, hydrostatic pressure, or torsion
involves ‘substantially the samé parameters is not a mere
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coincidence but is a direct consegquence of the differentlal
equation. The differential equation implles that when the
requirement of an integral number of circumferential waves
is removed the six varisbles L, r, t, E, up, and the
load may be combined into two nondimensional parameters,
one (kx, kv, kg, or Cp) describing the stress condi-

tion, and the other - (Z) essentially determined by the
geometry. (See appendix C.) It is also shown in appendix
that the buckling of & curved rectangular plate of any
glven length-width ratio may be represented in terms of
these parameters. The critlicsl stress of a cylinder or

a curved plate of given length-width ratio may thereforse
be .given by a single curve relating the two parameters
provided that the number of circumferential waves may be
regarded as continuously variasble. This restriction
becomes important at very large values of Z, for which
the curves may split into & number of curves for ¢¥linders
of different values of r/t buckling into two circum-
ferential waves. '

Except for hydrostatic pressure, each type of loading
considered results in a single unilorm stress 1ln the
cylinder, and the nondimensional parameter k describing
this stress is defined as follows in analogy to the -
parameter used in describing the buckling of a flat plate:

_ 0 _(or 1)
2D
L2t

k

As the radius of the ¢ylinder increases toward infinity
(the other dimensions remaining constant), the cylinder’
approaches an infinitely long flat plate of the same
thickness as the cylinder, having a width ‘b equal to
the length I of the cylinder. Accordingly, as the
radius approaches infinity, the critical-stress coef-
ficient k for the cylindér approaches the value of the
corresponding stress coefficient for an infinitely long’
flat plate under the appropriate loading conditlon. :

The other nondimensional parameter Z is defined
by the egquation :
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_ L2 2 ( L)g T 2
Z.= =— ¥1 - == = d -
rt w r t 1 H

If the small correction due to Polsson's ratic is .
neglected, a direct physicsl signjflcance can be assigned
to Z when i1ts magnitude is small. The maximum distance
from a slightly curved arc of length I and radius »r

to 1ts chord cin be shown to be glven by the expres-

ston L%/8r, which 1s called the "bulge" by some writers
(see references 9 and 10). Accordingly, in the case -of
a curved strip of length L 1in the circumferential direc-

tion, I2/Brt 1s the bulge divided by the thickness and,
1s thus a nondimensional measure of the deviation from
Platness of the strip. As applied to a short cylinder,

L2/8rt . is the deviation from flatness of a square panel
of the cylinder, each side of whirh is equal to the length
of .the cylinder. For cylinders huving a length greater
then a few tenths of. the dlameter, the parameter 2

loses thils simple physical significance and is perhaps
best regarded as a nondimensional measure of the length

of the cylinder. Some indication of the variety of -
cylinder shapes corresponding to a fixed value of’ 2

is given in figure 9.

Boundary conditions.- When problems in the stabllity
of cylindrical shells are solved by the use of Donnell's
equation, boundary conditions on u and v cannot be
Imposed directly because only w appears in the equa-
tions. The method of solution, however, may in some cases
Imply boundary conditions on u or v. In appendix D
it is shown that for slmply supported cylinders the method
used in the present paper (a solution using one or more
terms of a Fourier series satisfying the boundary condi-
tions on w:term by term) implies that at both ends of
the cylinder the circumferential displacement v 1is _
zero, ‘but that the cylinder edges are free to warp in
the. axlal direction (u # 0). For a simply supported
rectangular curved panel, the present method Implies
(with regard to displacements within the panel median
surface) zero dilsplacement along the four edges of the
panel and free warping normal to the edges. These edge
conditions on u and v are appropriate to cylinders
or panels bounded by light bulkheads or deep stiffeners
which are stiff in their own planes but may be redadily
warped out of their planes, : :

’
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Relatively few calculations of the stabllity of =
cylinder take into account the boundary condltions on u
and v. A calculation for the case of torsion, however,
was recently made by Leggett (reference 19) . The results
of this calculation, computed for w = v = 0 at the
edges of the cylinder, are given only for 2Z < 50Q.
Throughout the range for which they are given, however,
they agree very closely with the results found by the
method employed in the present peper, which impiies that
at the edge of the cylinder v = 0 and u # 0. Restraining
the ends of the cylinder from warping in the axlal direc-
tion may therefore be assumed to have & negligible effect
upon the buckling stress. This assumptlon recelves
added support from. the form of the equatlon of eguilibrium
given in oppendix A '

| 2 2 By O°F 1
DV4W+p+t o'xé—g+21' 6W+GQ_E+__§_=
- r
In this equation, ox? Oys and 4+ are the stresses
: +2p o
present just before buckling and -;5 1s the clrcum-
o}

ferential stress produced by the buckling itself. The
equation indicates that the only difference between the
buckling behavior of a cylindrical sheet and that of a
flat plate (found by omitting the last term in the fore~
going equation) is due to the effect of the circum-
Tferential stresses caused by the buckling deformations.
Because the restralnt against warping in the axial direc=-
tion requires the application of axial rather than circum-
ferential stresses, thils restraint might be expected to
have only small effects on buckling stressés. Circum-
ferential stresses would have to be applied to the
stralght sides of a curved strip to prsvent warping normal
to these edges during buckling. Becduse the circum-
ferential stress dus to buckling appears oxplicitly in

the equation of equilibrium, the imposition of the
restraint v = 0 to the straight sides of a panel should
have an appreciable effect on the buckling stress (except
when the stralght sldes of the panel are short compared
with the curved sides).

. Theoretlcal results on the buckling of curved strips
infinitely long in the axial direction are available to
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test the forogoing conclusion. In figuro 10 the critical
axlal compressive stress for an infinitely long curved
strip with u and v both zero along the edges (refer-
ence 9) 1s compared with the critical axial compressive
stress when u 1s zero along the edges, and the edges
ere free to warp 1n the circumferential directlion. (See
appendix B for solutlon.) The critical axlal stress is
appreclably increased by the constraint v =0 1n a
certain range of small curvature, In figure 11 the
critical shear stresses are compared under the same sets
of edge condltions (references 7 and 8). The critical
shear stress is consplcuously increased by the con-
straint v = 0 except nsar the 1im1ting case of flat
plates.

It appears from the foregoing discussion that the
effect on the buckling stresses of preventing free warplng
normal to the curved edges of a cylinder or panel 1s very
small but that the effect on the buckling strosses of a
similar restraint on the straight odges of a pansl may
be guite important.

Simpllcity of results.- The theoretical results
based on Donnell?'s equation for the critical stresses of
cylinders under a glven loading condltion appesr par-
ticularly simple when presented &8s a logarithmic plot of
buckling coefficlent k against the curvature parameter Z.
As r sapproaches infinity, and therefore &s 2Z epproaches
zero, k approaches the -value appropriate to a flat
plate., At large values of 7 the curvs aprroached a
straight line in each of the cases Investigated. These
straight 1ines had slopes 0.5, 0.75, and 1 and are givén
approximately by the following equatlions which have
already been gilven in the present paper 'ahd are reassembled
here arnd provided with upper and lower limits for easy
reference:

-L/Q e | '
ky = 1.047 100 < z < 5(%) (x - uz)
kg = 0.8523/ 50 < Z <1o<%> (r - u2)

- . r\e ( _ 2}
K, = 0.702% 3<2< 6 (%—) (r - w?)
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These oquations can also be written (when u 1s taken

to -be 0.316)
0.926 3’-)3/2(}-:) Goo§<( £>2< 5%)

1/2
cy—0.926 )/
/4
T-_-o.'ru?%’-“(:.g) = o.7h7E(E 5/1” /h 50 <(Z)<1or>
= Q, E;t '- ’ . t 2
%8 T - (3;<@<5%D

CONCLUDING REMARKS

The use of Domnell'!s equation to find the buckling
stresses of cylindrical.shells leads to simpler resultis
and involves less labor than the use of equetions in
which second-order terms are retained., The buckling
stresses found by use of Donnell's equation are in
reasonable agreement with results based on other theo-
retical calculations. Excent for the case of axial
loading, they are also in reasonable agreement with test
results,

Boundary condlitions having to do with axial snd
clrcumferentlal displacements cennot be handled dlrectly
by use of Donnell'!'s equetion. This dlsadvantage 1s not
considered serious, howsver, because the boundary condi-
tions on axlal and clrcumferential dlsplacement, which
ere implied by the simple solutions given, correspond
approximately to thoss that are most likely to occur in
practical construction and because in many cases the
buckling stress 1s not wvery sensitive to these boundary
condi tions.

Langley Memorial Asronautical Laboratory
Natlioneal Advisory Committee for Aeronautics
Langley Field, Va., March 20, 1947
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APPENDIX A -

SIMPLIFIED EQUATIONS OF EQUILIBRIUM FOR
CYLINDRICAL SHELLS

The vrincipal sets of simplified equations currently
in use for the equilibrium of cylindrical shells are
listed for convenient reference. The various sets of
equations are equivalent. The.reference papers in which
the equations are derived are also listed. The equations
given ars generally not ldentical with those in the refer-
eénce papers but.are modified in certain respects to
include all the loading conditions studied in the present
paper ' or to put them In the notation of the present paper.

The three following simultaneous equations in dis-
placements u, v, and w (reference L) are derived from

the conditions of static equilibrium: -
- 82 2 .
0% 1= pdfy, 1v .y 0TV LB _ (A1)
3x2 2 3y 2 3xdy Tox
2
02y 1o uov v ¥ L 1ow_
dyc 2 %2 2 dxdy Toy
B - D, a2 2 .
Dvl‘-w+_j__2_(é_‘.v+ug_\;+v_r>+t xé_l’r_l_a.r bw +Gy6—Y +P=_0’
r(l -p2)\oy "ox = " ox2 dx Oy dy2
(A3)

Two simulteneocus equations in deflection w and stress
function F (reference 7) are as follows:

vhp + EO3W _ . (aly)
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A single equation in deflection w (Donnell's equation,
reference 5) is

Dvaw-+§E-éEﬂ-ptv 62W 37w +0 baw 4—Vh (46)
éx oy v 6y2

The relationships between u and w and between v
and W are (reference 5)

rvby = - p,ésw + 3w (AT)
3x7  dx oy@ S

5w . > '
rV)'"v=—(2.+p,) o7w _bw (A8)

dx2 dy Ooyd
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APPENDIX B
THEORETICAL SOLUTIONS

Donnell's equation for the equilibrium of cylindricsal
shells 13 used to investigate the stability of simply
gupported cylinders subject to lateral pressure, axial
compression, and hydrostatic pressure, and of slmply
supported curved strips long in the axial direction
subject to axlal compression.

Cylinder under Lateral Pressure

If ‘bending of the cylinder wall is neglected,
constant lateral pressure on a cylinder causes only
circurferential stresses. Donnell's equation (equa-
tion (A46)) then reduces to

L 2
Dv8w+Etaw+cwh9—w=o ' (B1)

r2 3 y dy2
where

- BF
Uy“ £

and p 1s the pressure apvlied. (The term Vhp appesring
in equation (16? is gero when p is constant.) Division
of equation (Bl) by D results, with proper substitutions,
in the following equation:

8, , 1222 3ltw w2 ) Pw _
VT ek T T Y 3y2 =

The boundary conditlons corresponding to simply supported
edges (no deflection and no moment along the edges) are
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w(0, y) =w(L, ¥y) =
2
& 0, 1 =2 (1, 3 = 0
dx2 ax?

A solution of equaticon (B2) satisfying the boundary condi-
tions for simple support is .

W = w, sin %? sin E%ﬁ - (B3)

L

where A is the half wave length in the circumferential
direction. Combining equation (B3) and equation (B2}
yields the following equation:

@2 + g2)°+ lZﬂile' -k (w2 + =0  (BU)

The solution of eguation (Bl.) for ky 18

e = (n2 + 52)2 . 1272t (55)
v B2 (2 + p2)°
where
. L
P=X

The critical valus for ky l1s found by-minimizing the

right-hand side of equation (B5) with respect to m
and  RB. If the numerator and denominator of the last

term -in equation (B5) are divided by mu it becomes
evident that under the restriction of integral values
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of m, Xk, will be a minimum when m = 1. Equatlon (B5)
therefore® becones

_ (1 +p2)2 1222

. (B6)
B2 kg2 + p2)2

The results found by minimizing this expression for kv

with respect to £ (considered contlnuously variabls)
is shown in figure 1 by the curve independent of r/t.

At low velues of Z, buckling is characterized by
a large number of circumferential waves. As Z 1increases,
the number of cilrcumferential waves decreases until 1t

e
finally becomes two (h = 2;), corresponding to buckling

into an elliptical cross section. The curves for buckling
into two clrcumferentlal waves are shown in figure 1 as

the curves for various values of % 41 - p2. The equa-

W
tions for these curves are found by substituting 1n eque-
tion (B5) the last of the following expressions for P

_L_2L _2 Z
S W | PN
2
T\ -

Cylinder in Axial Compression

When only axial stress is present, equation (A6)
becomes

8 Et obw gfézw _ '
r2 yxlt bxa '

Division by D results, with proper Substitutions, in
the following .equations.
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oy, 222 oM w2l 3%

=0 (B8)
LlL dxlt 2 ax2

Combination of the deflection equation (B3) with equa-
tion (B8) yields the following equatlons

(@2 + )" + ia—ii‘mﬁ - km? (? 4 02)% =0 (29)

The solution of equation (B%) for k, 1is

L@ @22 12 7m®
* m? ot (m2 + 2)°

The critical value of kx for a given value of Z
may be found by minimizing k, . with respect to the
parameter

(2 + 2)° ‘x B S

me

If no restrictions are placed on the value that this
parameter can take, the minimum velue of ky 1is found

¢ to be

ky = anﬁz = 00,7022 (B1O) \

which coincides with the results generally given for the
buckling of long cylinders.
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For values of Z ©below 2.85, however, the straight-
line formula (equation (BL0)) cannot be used, since it
implies eilther iImaginary values of the circumferential
wave length A or the number of axial half waves m ' '
below unity. The critical stress coefficient ky for

Z < 2.85 1is found by substituting the limiting values
B=0 and m =1 in equation (B9) The results are
shown in figure 3.’ ' ’

Cylinder. under Hydrostatic Pressure

Hydrostatic pressure applied t0 a closed cylinder
produces the following axial and clrcumferential stresses:

S

[} =

F e

(o) ;:B?- . o -
¥ t ‘ o ’ '

The equation of equilibrium (egquation (AS)) when both
circumferential and axial stress are present is (silnce

vip = 0)

- 2
DvBw + E‘i éh“’ Oy tvLL + o ol €% = g (B11)
X}“' 63{2 J 61;'2

By use of the definition

o = PEIZ o
p D2 . .

equation (Bll) can be written

_ _ - _
78w + léZE-QEE + Cp — i vh (1 25w QEE =0 (B12)
i ol 12 2 dx2  ay2
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If the deflection equation (equation (B3)) is combined
with equation (B1l2), the following expression results
for. CL2

p.

_ (ma + 52)2 . lZZZmA

: 2
w2 | o2 it (w2 + g2)2 (5'—1— + 52>
> 2

Cp

The critical value of Cp is found by minimizing the

right-hand side of equation (B13) with respect to m
and B, with due regard to the values which m and
mey essume. It can be shown that the minimum value of C

is found by taking m equal to 1, so that equation (Bl3)
becomes

2)2 2
_ QG+ 62 . 12z (B1L)

. |
Tl A Grer (i)

Equation (Bih) is eguivalent to an egquatlon derived by
von Mises (reference )i, p. 179). The results of mini-
mizing Cp with respect to § are shown in figure I.

(The curves given for various values of % ql - pa have

the same significance as in the case of a cylinder
buckling under lateral pressure alone.)

Long Curved Strip in Axial Compression

Because 1t merely describes equilibrium at a point,
equation (Bl) applies to the buckling of a long curved
strip as well as to cylinder buckling. In modifying this
equation to obtain nondimensional coefficients as in
equation (B2), however, it 1s convenient to define kx
and Z in terms of the width of the strip b rather
than in terms of thes axial length I, which applied in
the case of the cylinder. Accordingly, equations (Bl)
and (B2) for a cylinder in axial compression may be
applied also to the hbuckling of & curved strip, long in

(B13)
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the axial direction, subjiected to axial compression, pro-
vided the curved width b 1s everywhere substituced for
the axial length L. Substitutlon of-the deflection

nmy

w o= W, sin sin ——
b

N

into equation (B2) (modifiled by substitution of b
for L) gives

(o2 + g2)% 12777
Be (a2 + 62)°

ky = (B15)

where
b
FEX

Equation (Bl5) 18 very similar to equation (B5) and
each equation yields the same critical value for kyx at

large values of Z. At small values of Z, the minimum

value of ky 18 found by taking =n = 1 in equation (Bl5)

and minimlzing with respect to B the resulting expres-

sion for k4. The results are given in figure 10 together

with results found by Leggett (reference 9).
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APPENDIX ©
PARAMETERS

It 1s shown thar Donnell's eguation implies that
under certain limitations the buckling coefficient k,
familiar from flat-plate theory, can be expressed in
terms of the curvature parametdr Z alone in the case
of a complete cylinder or a curved rectangular psnel of
given length-width ratio.

Donnell's equation (A6) is {when p is constant or .

zero)
2 2
DV8w + EL-——— + Vh 6 w.+ 27 -QEE— + O Q—E =0 (C1)
re 0x Oy T ay?
Let -
X
T
I
g =M
and
z 2 -
VGZ_—Q—é-'I-—b——é
0E"  am
Then

Multiplication of equation (Cl) by 8 and substitutilon
of the dimensionless coordinates & and mn glves
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2 2
8w + EEEE i bgthu 0¥ | o 2T¥ oy baz =0
I.2‘ bgu 5@2 & oM omn
Division by D results in
v 8w + mtod dbw bZtVuG 02w , . OFw 02w\ _ o
2 gk G 082 . g on Y a2
Et2
or, since D= . s
12(1 - u2)
Ly, 2
VG8w+1222 9-'1“‘-+112VGLL kxéa—g-!- s ofw +ky9§—;- =0 (C2)
S d& 0g om an
where
2
b 2
7= — -
rt . B
Oxtb2
kx - X ¥k
D2
2
kg = Ttb
De
2
. =.Gztb
y D2

Even wilthout solving this
must be a function of the

equation it 1is clear that w

independent variasbles & and mn,
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and also the parameters 3z, ky, kg, and k and the

derivatives of w will be functions of the same variables
and parameters. Thus, if only one type of loading
(represented'by the buckling coefficient k) 1is present,
equation (C2) may be written

fl(g.! M, 2, k) + 1222f2(§: Ns Z, k) + Tfakff;(g: N, % k)=0

(¢3)

where -fl, o, and fz are definite, though unknown,

functions. The variables ¢ and 1 may now be eliminated
by integration of both sides of this equation over the
entire range of & and 1. In the case of a curved panel
of circumferential dimension a and sxial dimension b

the resulting equation 1s '

1 %) _
f déf dﬂ Lfl(é’ s Z, k) + lZZZfZ(és T Z, k)
0 0

+ 1Pkf3(g, M, 2, k)] =0 | (cly)

The integrals of the functions £y, £z, and f3

depend only upon Z, k, and the value of the ratio. a/b.
Accordingly, equation (cly) implies that a relationship of
the following type exists: _

fu(k, Z, %)= . (C5)

Equation (C5) indicates that for any given value of the
panel aspect rdatio a/b, the critical-stress coeffi-
clent k depends only upon Z.

If a complete cylinder of length L rather than a
panel of length b 1is uhder consideration, and the



30 NACA TN No. 1341

deflection w 1is periocdic with wave length 2A 1in the
circumferential coordinate, the integration

a
b
dn
o
appearing in equation (Cly) may be replaced by

p2h
L
dn

where ¢ and 7 are now defined as x/L and y/L,
respectively. The result then becomes

f56{’ Z’ .%.?\.' =0
L

or

k= f6<Z, %?-‘ (Ccé)

The actual buckling stress is found by minimizing k with
respect to 2A\/L. '

Theoretically, A must satlafy the equation

nr-= n\ (C7)

where n is the number of circumferential waves and
therefore an integer. When many circumferential waves
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are present, however, this restriction does not signifi-
cantly affect the buckling stress, and the minimization

K -
of k with respect to %; (considered continuously
varigble) leads to the result

ks= fo(Z) (c8)

Equation (C8) indicates that provided the number of circum-
ferential waves is not too small the critical-stress coef-
- ficlent for a cylinder depends for practical purposes only

upon the curvature parameter Z. ) )

When n 1s so small that 1ts integral character mast
be taken into account, 1t appears from equations (C6)
and (C7) that k .depends upon both Z and r/L. Since,

however,
1l r - é
() Z t -2

k for small values of n can alternatively bé expressed

in terms of % and % - p2, as in figures 1, L,
and 7.

By a similar analysis, it can be shown that when the
buckling of a cylinder under hydrostatic pressure 1s
represented by plotting the pressure coefficlent GCp

against Z, & single curve 1s obtained except where the
small number of circumferential waves requires splitting
the curve into a series of curves for different values

2\{ 2
of . 1 - p~.
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APPENDIX D

BOUNDARY CONDITIONS ON EDGE DISPLACEMENTS.
- WITHIN THE MEDIAN SURFACE

The solution of Donriell's eighth-order partial dif-
ferential equation for thesstability of cylindrical shells
is not unique under the imposition of the ordlnary boundary
conditions for simply supported or clamped edges. Two
more boundary conditions at each edge, for example, one
conditicn for wu &and one for v, are required to define
completely the physical problem and are therefore needecd
to make the solutlon unigque. Becauss only W appears in
the equation, boundary condlitions on u and v cannot
be imposed directly; they may, however, be implied by the
method of solution. The purpose of this appendix is to
show what boundary conditions on u and- v &are implied
by the method of solution used In the present paper. In
order to simplify the discussion, the analysis will first
be made for the case when only axisl compression 1s
present and will then be extended to other cases.

When only axial stréss ls present, Donnell's equa-
tion (equation (A6)) becomes

2
ovlw + % olbw o, vl &8 =
r 6xu éxa

If the shell described by this equation is a curved pansel
with the origin of coordinates in one corner of the panel,
a solution satisfying the usual boundary conditions for
simple support 1is

by
b

mwx
W = Wy sin — sin (D1)

where m &and n are integers. Thls solution is also
the solution to the problem of the buckling of an inflnite
two-dimensional array of panels identical to the one undsr
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consideration. (See fig. 12.) When such an array buckles,
the dlsplacements u, v, &and w as well as the stresses,
described by the stress function P, may be presumed to
be periodic over the interval 2a 1n the axial direction
and 2b in the circumferential direction.

Any function wu(x, y) that is periodic with a wave
length 2a 1n the x-~direction and with a wave length 2b
in the y-direction may be expanded as follows (see, for
example, reference 20):

o [ecd .
u = ZE: E &nn Sin = sin EEX_

a b
m=1 n=1
o] o . =
m nny
+ E E b. in ——
mn Sin " cos o
m=1 n=
(=] . oo
mmx DTy
+ > D> omn c0s T2E sin =
m=0 n=1
-+ GOSIEE Osm " D2
Z dmn a ¢ b ( )
m=0 n=0

The relationship which must exist between uwu and w 1is
(equation (A7))

3
rvhu + o W_

ax5 dx dy=
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Substitution into thils equation of the expressions for u
and w from equations(D2) and (Dl), respectively, and
use of the orthogonality of the functions in equation (D2)
leads to the result

A 2
_Wo [ﬁ %;) - %g (%FQ—J-cos_mﬂx

N

Accordingly, the boundary conditions on u are

u{x, 0) =0 (D3)
u(x, ) =0 (Dly)
% (g, y) =0 (D5)
0x : X
!
du _ :
— (a, y) =0 (D6) -
ox . -

Similerly by use of equation (A8) instead of egqua-
tion (A7) it can pe shown that the boundary conditions
on VvV are

v(0, y) = 0 (D7)

via, y) =0 (D3)
& (x, 0) = 0 (D9) '
>y -
oV -
— (x, ) =0 (D10)
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The boundary conditions of equations (D5), (D6),
(D9), and (D10) may be combined to give four boundary
conditions on the. stresses Induced by buckling. These
boundary condlitions, which are alsoc derivable from equa-
tion (Al) by a method analogous to that just used to S
derive the conditlons relating to w, are

3 2R

I
o

(0, 7}

[\V]

(D11)
oy '

— (a, 7} (D12)

[
=)

—5 (x, 0) =0 (D13)

=== (x, b) =0 : (D1ly)

.

3°F d2F )
where -——= and T are, respectively, the median-
3y dx% _
surface axial and circumferential stresses caused by
buckling. The elght boundary conditions given by equa-
tions (D3), (Dh), (D7), (DB), and equations (Dl1)to (Dll),
plus the eight boundary conditions on w for simple )
support of the four panel edges taken together unilgquely
determine the buckling stress.

Although the preceding discussion of boundary condi-
tions started with the assumption of axlal stress only,
the only use made of this assumption was in obtalning
equation (Dl) as the solutlon for the buckling deformation.
The same deformatlon, and hence the same arguments, apply
when clrcumferential stress 1is present. When shear is
present, a series of terms of the type in equation (DL)
must be used to represent the deflectlon surfeace, and B
hence series of terms occur in the expressions for u,
v, and PF. Since the boundary conditions derived in
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the preceding analysis apply to each of the terms indi-
vidually, by the principle of superpositlon they must also
apply for the sum, so that equations (D1l) to (D)
represent the boundary condition no matter what the
applied stresses are. - B T

In summary it may be stated that the substitution
of one or more terms of a double-sine-serlies expansion
for w into Innell's equation and solution of the
resulting equation for the buckling stress gives the
solution corresponding to the following boundary condi-
tions:

(1) Each edge of the panel (or cylinder) 1ls simply
supported; that is, the displacement normal to the sur-
face of the panel and the applied moments are zero at
the edges. - : 2

(2) Motion parallel to each edge during buckling 1is
- prevented entirely. '

(3) Motion normal to each edge in the plane of the
sheet ocecurs freely. - . e -
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" " FRigure 7.- Critical shear-stress coefflelents for simply supported

eylinders subjected to torselon.
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Figure 8.- Comparison of theoretical solutlon for critical shear
stresg of simply supported cylinders in torsion with experimental
ultimate stresses. (Lundquist's solution is from reference 11,
Donnell's solution is from reference 5, Moore and Wescoat's
solution ls from reference 17, and Bridget, Jerome, and
Vosseller's solution ie from reference 18.)

g "S14a

TPET "ON NI VOVN




NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 9.- Representative cylinders corresponding to the same value
of Z (Z about 150}.
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Figuré 10.- Comparison of the present solution for the buckling
under axial compresslion of a curved strip inflnitively long in
the axial direction, with solution found by Leggett (refefence 9).
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Figure 11.- Comparison of theoretical solutions for the buckling under
shearing stresses of & curved strip infinltely long ln the axial
direction. (Leggett's solution is from reference 8 and Kromm's
solutlion is from reference 7.)
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Figure 12.- Two-dimensional array of identlcal curved panels.
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